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Ab~tract

-> The potential-dependent C-N stretching mode, VCN,; for thiocyanate

adsorbed at the gold-aqueous interface is examined by both surface-enhanced

Raman spectroscopy (SERS) and subtractively normalized interfacial Fourier

transform infrared spectroscopy (SNIFTIRS). Both SERS and SNIFTIRS exhibit

a * CN band around 2120-2134 cm- I over the potential range +500 to -500 mV

vs. s.c.e., consistent with the presence of a predominantly S-bound

adsorbate. The potential-dependentVCN frequencies were very similar

(within ca. 5 cm- ) for SNIFTIRS at smooth and electrochemically

roughened gold, as well as for SNIFTIRS and SERS on the latter surface.

This suggests that the SERS-active sites do not differ substantially

from the preponderant sites sensed by SNIFTIRS. Some features of the SER

spectra suggest that N- as well as S-bound adsorbed thiocyanate exists at

far negative potentials.
o. .
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There is currently rapid development occurring in the application of

vibrational spectroscopic methods to the in-s'ivu molecular characterization

of electrochemical interfaces. Two such techniques are surface-enhanced

Raman spectroscopy (SERS)3 and subtractively normalized interfacial Fourier

transform infrared spectroscopy (SNIFTIRS).4'5 A virtue of the former

approach is that the very large (ca. 10-107) surface enhancement of the

Raman scattering, including unattached as well as surface-bound species,
6

enable absolute vibrational spectra to readily be obtained at SERS-active

surfaces, even for solutions containing high (5 0.1 M) bulk adsorbate

concentrations. On the other hand, it is possible that adsorbate molecules at

the particular surface sites that are primarily responsible for SERS

exhibit atypical chemical and vibrational properties compared to those for

the preponderant adsorbate molecules. Surface infrared spectroscopy

does not suffer from this disadvantage since detectable spectra for

adsorbed species can readily be obtained at smooth metal interfaces using

SNIFTIRS or related difference spectral techniques, for which little or

4
no surface enhancement of the infrared absorption appears to occur.

This suggests that a valuable way of checking the applicability of

SERS as a quantitative probe of surface structure is to compare surface

Raman and infrared spectra obtained under identical conditions for

adsorbates whose vibrational frequencies are known to be sensitive to the

nature and type of the surface bonding involved. No such quantitative

comparisons appear to have been reported previously. For

In this communication we compare corresponding potential-dependent 0
ad 5

SERS and SNIFTIRS data gathered for the C-N stretching mode of thiocyanatetlo

adsorbed at gold electrodes, and summariz, other SER spectral features
ton/

for this system. The SNIFTIR spectra were obtained at both mechanically aity Codes_

polished an- electrochemically roughened surfaces, the latter also bein; ea/ecial
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employed to acquire the SER spectra. Gold surfaces prepared by prior potential

sweep oxidation-reduction cycles in chloride have recently been shown to.

provide remarkably stable and intense SER spectra for a miscellany of

adsorbates in aqueous media.7 Thiocyanate is an interesting model

adsorbate for several reasons, not the least of which are the large

(40-80 cm- ) increases in the C-N stretching frequencies accompanying

metal-sulfur bonding, nd the several spectral features that enable a

distinction to be made between N- and S-coordination.8 Besides demonstrating

close similarities in the potential-dependent C-N stretching frequencies

for the corresponding surface Raman and infrared spectra, the present

results provide an illustration of the merits of employing SERS and

SNIFTIRS as complementary tools for gaining molecular structural

information at electrode interfaces.

Experimental

Details of the SERS measurements are as given in ref. 9. Raman

excitation was provided by a Spectra-Physics Model 165 Kr+ laser operated

at 647.1 nm, and the spectra gathered by using a SPEX Model 1403 double

monochromator. SNIFTIRS measurements utilized an IBM Model 98-4A vacuum

spe:trometer, with the thin-layer electrochemical cell positioned in a small

external compartment purged with nitrogen. Most details of the cell and

the spectral measurements are given in ref. 5a. I
The electrode used for the SERS measurements consisted of a 4 mm

diameter gold disk sealed into a Teflon sheath of rotating disk construction

(Pine Instruments). The SNIFTIRS electrode was a 7 mm gold disk sealed into

Teflon. The electrodes were mechanically polished on a wheel with alumina down to

O.C3 - particle diameter and rinsed with water. The electrochem.ical roughening,

A A



necessary for SERS, consisted of 20-30 potential sweeps between -300 mV

and +1200 mV vs saturated calomel electrode (s.c.e.) in 0.1 M KCl. The

surface remained shiny after this p: cess, although gold electrodes

displaying a pale brown hue and yielding even greater SERS intensities

could be produced by holding the potential at the positive limit for

0.5-1 secs during each scan. Roughened as well as smooth electrodes having

reflective properties were preferred for the SNIFTIRS measurements so to

maximize the signal throughput. Differential capacitance measurements

on these electrodes were undertaken as described in ref. 10. All electrode

potentials are quoted versus the s.c.e., and all measurements were made

at room temperature, 23 ± 10C.

Results and Discussion

Aqueous solutions containing Z 0.01 mM thiocyanate in 0.1 to 0.5 M

Na2SO4 , NaC104, or KC1 supporting electrolytes yielded several SER spectral

features at gold electrodes that indicate that NCS is specifically

adsorbed over the entire polarizable potential range, +700 to -900 mV vs

s.c.e. Representative SER spectra for 1 mM NaNCS in 0.5 M Na2SO4 at

four electrode potentials are shown in Fig. 1. At the two most positive

potentials, 500 and 100 mV (Fig. lA,B), the spectra are similar to

those seen previously for thiocyanate adsorbed at silver electrodes.1 I'12

Thus an intense and relatively broad (FWHI-I n- 30 cm-) C-N stretching band
.N.P

(v ) is seen at 2110-2130 cm , a weak band at about 700 cm

assigned to C-S stretching (vCS), a band around 450 cm attributed to
-l

N-C-S bending (CS), and a broad feature around 240 cm . The frequency

of this last band is diagnostic of a metal surface-sulfur vibration

9.3
( .uS2, SERS bands at similar frequencies being found at silver and zo-c

Au-S

eiccrodes for several N-bound metal thiocyanate complexes for which surface



attachment must occur via the sulfur atom. The low-frequency bands associated'

with surface-adsorbate vibrations for the supporting electrolyte anion, which

-1 2- 7
occur at 185, 178, and 265 cm for SO4  , CO 4 , and CI respectively, are

completely removed upon addition of z 0.1 mM thiocyanate.

At more negative potentials (: -100 mV, Fig. lC,D), a new feature at

295 cm appears and the 240 cm-1 band is reduced in intensity. This suggests

that the S-bound thiocyanate is progressively being replaced by the N-bound

form since these relative frequencies are consistent with that expected from

7 f
the relative masses of the surface binding atoms.

The behavior of the other vibrational modes are less conclusive in this

regard. Thus the 6 NCs band remains at about 450-460 cm- I throughout the

complete potential range even though slightly higher frequencies would be

anticipated if N-bound adsorbed thiocyanate is being formed.8 Although the

VCN band decreases in intensity and shifts to progressively small frequencies
-i

in the range 2100-2130 cm as the potential is made more negative, this

frequency range is typical of that encountered for S- rather than N-bound
-l18

thiocyanate, the latter most commonly being found around 2050-2080 cm .

In addition, a weak band around 700 cmi, also indicative of S-coordination,

is obtained at positive potentials that weakens and eventually disappears at

the most negative potentials.

Measurements of the differential double-layer capacitance against electrode

potential (Cdl-E) also indicate the presence of substantial thiocyanate

adsorption over the entire potential range 600 to -900 mV. This can readily

be discerned from the addition of z 0.1 mM thiocyanate to 0.1 M KCI which

results in loss of the broad Cdl-E peak centered at 300 mV due to potential-

dependent chloride adsorption. Smaller, roughly potential-independent
-2

capacitances, around 25 iF cm , are obtained, which are indicative of high

10adsorba~e coverages. The Cdl-E curve shapes were essentially unaffected

iI
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by electrode roughening, although somewhat surprisingly this resulted in

significantly (ca. 20%) smaZler capacitance values.

The SNIFTIR spectra were obtained using -900 mV as the reference

potential, where the extent of thiocyanate adsorption should be minimised.

(Hydrogen evolution commences at more negative potentials.) Representative

spectra obtained by stepping to several more positive potentials for 1 mM

NCS in 0.5 M Na2SO4 at smooth gold are given in Fig. 2. Comparable results

have also been obtained for similar conditions using electrochemically modulated

infrared spectroscopy (EMIRS).4a'14 At the most negative potentials, ca.

< -200 mV (Fig. 1A), a bipolar band occurs with positive- and negative-going

-1peaks (features I and II) around 2105 and 2120 cm , respectively. At more

postivie potentials the negative-going band broadens and shifts to higher

frequencies, and a large positive-going band appears at around 2065 cm
1

(feature III, Figs. IB-D).

Figure 3 shows a corresponding series of SNIFTIRS spectra for gold

that was electrochemically roughened in the same manner as that used to

produce the SER spectra in Fig. 1. These two sets of SNIFTIRS spectra

are very similar; however, the broad negative-going band (feature II)

on roughened gold is resolved into a pair of peaks at more positive

potentials and a low frequency shoulder around 2040-2050 cm appears

on feature III (Fig. 3B,C).

Feature II is entirely consistent with the formation of additional

S-bound thiocyanate as the potental. becomes more positive. Figure 4

contains a plot of the SNIFTIRS peak frequencies, P, CN, of this band for smooth

and roughened gold (closed triangles and circles, respectively) as a

function of potefttial. (For the latter surface, vCN for the major, lower

:requency, band is plotted.) Also included are the v frequencies

Dbtned frz- the notential-dependent SER spectra on roughened 'oid

(oper symbols). Two sets of points are shown; the squares are the SERS

-*A "r ..
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re frequencies, C for the v CN band, whereas the circles are theaI
"band center" (or average) frequencies, vCNa obtained by bisecting the

p a
band area. [Small yet significant differences between v CN and vCN

occur because the SERS bands are slightly asymmetric, vCN shifting from

the high- to the low-frequency side of the band center as the potential

becomes more negative (Fig. 1).]

Inspection of Fig. 4 shows that the SERS and SNIFTIRS v values are
-lN

mostly within ca. 5 cm of each other throughout the potential range

500 to -500 mY. The small differences are indeed comparable to the

uncertainties in evaluating V P especially for the infrared data.
a CN

Admittedly, the potential dependence of v at roughened gold is significantly

smaller for the SNIFTIRS than for the SERS data (Fig. 4). This apparent

discrepancy is, however, probably due chiefly to the distortion of the negative

SNIFTIRS v CN band (feature II) by its positive-going partner (feature I)

since these two halves of the bipolar band overlap. Correction for
P

this distortion will decrease v CN more at the more negative potentials

where features II and I are least resolved. Nevertheless, the

potential dependence of vCN appears to be relatively small; after allowing

P -1-for these corrections one finds for both SERS and SNIFTIRS d, /dE - 12 cm- V-
CN

and for SERS da /dE " 8 cm- V 1
CN

The values of dv/dE are somewhat smaller than those found for

several other structurally related systems using surface infrared or

Raman measurements, such as NCS at silver, CN at silver, 15 or CO at

16Pt, although similar to that obtained for CN at Au using SERS,

15 cm V-. Some of the literature values may be influenced by

potential-dependent variations in adsorbate coverage or structure.

Given that an important component of these potential dependencies appears

:o be from an electric field (Stark) effect, 17 the small dl.: /dE values for
CN;
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NCS at gold may reflect the separation of the C-N group from the surface such

that it experiences a smaller electrical field.

The large positive-going band at 2060 cm-I (feature III) in the

SNIFTIRS spectra has also been seen under similar conditions using EMIRS,

and attributed chiefly to the presence of N-bound thiocyanate at negative

potentials which reorients to the S-bound form at more positive potentials.
4a,14

While this interpretation is qualitatively consistent with the low-frequency

-1SERS data, as noted above there is an absence of SERS bands around 2060 cm

even at potentials as negative as -1000 mV. An alternative explanation

is that feature III is associated chiefly with solution thiocyanate (for

which v CN - 2060 cm- I) which is removed by adsorption as S-bound thiocyanate

as the potential is altered from -900 mV to markedly more positive values.

Although feature III is much more pronounced than the negative bands

associated with S-bound thiocyanate (feature II, Figs. 2,3), this can be

accounted for if the molar absorptivity of v for S-bound adsorbed

thiocyanate, eNCS- is appropriately smaller than for uncoordinated

thiocyanate, £NCS as well as for the N-bound form, cSCN-" At least for

bulk-phase thiocyanate complexes, typically eNCS " 0.2 CNCS 0.1 CS C8,8
NCS- NCSSCN-'

moreover,~ frNC 8a
mAu(SCN), CN2 0.1 C Therefore the S-boundmoeoer fr u(CN 4 , NCS_ 0. NCS"

adsorption of a given amount of free thiocyanate from the thin solution

layer is anticipated to yield a substantially (ca. tenfold) larger

positive band at 2060 cm than the accompanying negative SNIFTIRS band,

in correspondence with the experimental data. The low-frequency shoulder

on feature III at around 2040-2050 cm , seen most clearly with roughened

gold (Fig. 3B,C) may well be due to reorientation of a small amount of

N-bound thiocyanate present at -900 mV.

Admittedly, the assignment of the main feature III to loss of N-bound

'-iocyanate is in itself also in harmony with tlie data 7- 4~s. and .Ai

... p



marked decrease in the intensity of feature III is, however, obtained when

more dilute (0.1 mM NCS) solutions are employed and the electrode is

pushed against the optical window so to minimise the thin-layer volume

adjacent to the surface. This is consistent with the assignment of feature I
III to solution thiocyanate, but not with the adsorbed N-bound thiocyanate

since the latter should be unaffected by the quantity of thiocyanate

available for adsorption upon stepping to more positive potentials.

Taken together, then, the SERS and SNIFTIRS data both indicate the

presence of S-bound thiocyanate at potentials less negative than ca.

-400 mV, whereas some evidence suggests that the N-bound orientation

may form at far negative potentials. The strong preference of the gold

surface for the former thiocyanate orientation is expected both from chemical

19
bonding and electrostatic arguments, the latter predicting S-bonding at

positively charged surfaces since the sulfur atom carries most of the negative
8

charge. Given that the potential of zero charge (p.z.c.) of polycrystalline

gold is around -50 mV vs. s.c.e. in the absence of specific adsorption20

and that a thiocyanate monolayer should shift this at least ca. 500 mV
11

more negative, extensive N-binding is expected to be restricted only to very

negative potentials. It is also possible that both N- and S-binding

occurs at more negative potentials with the thiocyanate lying flat on

the surface; this geometry can account for the lack of a 2060 cm peak

in the SER spectra since such "bridging" thiocyanate usually yields a

-18
CNband above 2100 cm18

Given the large (60-70 cm- ) increase of vC upon S-bound adsorption

-1of thiocyanate, the close (within 5 cm- ) agreement in the frequencies of

this species seen by the Raman and infrared probes, as well as the

similarities of the latter at smooth and roughened electrodes, ses
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that the -old surface sites probed by SERS are chemically similar to the

average of predominant sites -hat are presumably sensed by infrared

spectroscopy. Close similarities have also been obtained between the

SER and infrared spectra of cyanide on silver,4 a ,2 1 although parallel -4
-

data sets using the same conditions for both techniques were apparently

not obtained.

It will clearly be necessary, however, to examine systematically

a number of systems under identical conditions in this manner before any

sweeping conclusions can be drawn. Nevertheless, for substrates where

Raman as well as infrared techniques can be employed, the strengths and

limitations of the two methods are such that we anticipate that they will

supply valuable complementary information.
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Figure Captions

Figure 1

SER spectra for adsorbed thiocyanate at gold-aqueous interface at

four electrode potentials as indicated (vs. s.c.e.). Solution contained

1 mM NaNCS in 0.5 M Na2SO4. Raman excitation was 50 mW spot focussed

(ca. 2 mm diameter) on gold surface; spectral band-pass was 5 cm-I . Typical

peak intensity of v CN band was 3 x 103 counts sec versus background.

Figure 2

SNIFTIR spectra for thiocyanate at an electropolished gold-aqueous

interface, using -900 mV vs s.c.e. as the reference potential, to four more

positive potentials as indicated. Solution contained 1 mM NaNCS in 0.5 M

Na2So4. Spectra are an average of 1024 normalized scans at each potential.

Figure 3

SNIFTIR spectra for thiocyanate as in Figure 2, but using roughened gold

under conditions used to generate the corresponding SER spectra in Figure 1.

Figure 4

The frequency of the C-N stretching mode for adsorbed thiocyanate at

gold, vCN, obtained from SERS (open symbols) and SNIFTIRS (closed symbols)

plotted against electrode potential, E. Circles are peak values of vCN

obtained from SERS or SNIFTIRS data at roughened gold; closed triangles

are corresponding SNIFTIRS data at smooth gold. Open squares are average

values of vCN obtained from SERS (see text). ? %

%I
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